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{10]. Also it indicates that the gyroelectric property is similar to that
of gyromagnetics.

IV. CoNcLUSION

In this work, a gyrotropic node has been proposed and derived for
the TLM technique considering general anisotropy in the frequency
domain. An efficient and accurate TLM algorithm using the proposed
node has been used to the study of a class of generalized planar
structures involving ferrite and semiconductor layers magnetized
by applying an arbitrarily oriented external dc magnetic field. The
frequency-dependent characteristics of r-cut sapphire-based CPW
are also obtained. It is belicved that the present field-theoretical
modeling technique paves the way to the unified analysis and design
of microwave and millimeter-wave integrated nonreciprocal devices
and high-Tc superconducting devices.
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Electromagnetic Boundary Value Problem in
the Presence of a Partly Lossy Dielectric:
Considerations About the Uniqueness of the Solution

S. Caorsi and M. Raffetto

Abstract— This paper deals with the uniqueness of the solution of a
boundary value problem defined by specifying the tangential components
of the electric field over the closed regular boundary (or the tangential
components of the magnetic field over the boundary, or the former
components over part of the boundary and the latter components over
the rest of the boundary) of a limited region containing a linear dielectric
material not lossy everywhere. In particular, the uniqueness of the
solution is proved in the case where the dielectric is everywhere linear,
homogeneous, and lossless, except for a subregion where the dielectric is
lossy, linear but not necessarily homogeneous.

1. INTRODUCTION

Many authors have addressed the problem of the uniqueness of
the solution of an electromagnetic boundary value problem. As many
different types of problems are important in electromagnetics, a lot
of different uniqueness theorems, tailored to the specific applications,
have been devised. For example, Miiller {1], Harrington [2], Balanis
[3], and Collin [4] considered time-harmonic electromagnetic fields,
and Stratton [5] dealt with arbitrarily time-varying fields.

As far as time-harmonic electromagnetic fields are concerned, it
is well known [2], [3] that the tangential components of the electric
field or the tangential components of the magnetic field over the
boundary (or the former components over part of the boundary and
the latter components over the rest of the boundary) of a domain filled
with a linear and everywhere lossy dielectric uniquely determines
the solution to the boundary value problem. However, to our best
knowledge, nobody has proved the uniqueness of the solution when
the boundary conditions are the same as described above but the
dielectric is made up partly of a lossless dielectric material and partly
of a lossy medium. This paper deals specifically with this problem.
In particular, it will be shown that the tangential components of
the electric field over the boundary (or the tangential components
of the magnetic field over the boundary, or the former components
over part of the boundary and the latter components over the rest of
the boundary) uniquely determine the solution of the corresponding
boundary value problem when the medium within the boundary is
linear, homogeneous, and lossless, except for a linear and lossy
subregion that may be inhomogeneous. Future efforts will be devoted
to the general problem in which the linear and lossless dielectric is
inhomogeneous (even with jump discontinuities).

II. DEFINITION OF THE BOUNDARY VALUE
PROBLEM AND UNIQUENESS OF ITS SOLUTION

Fig. 1 shows the typical boundary value problem considered in this
paper. §2 denotes the region of interest, S is its regular boundary, 2,
is the region where the dielectric is linear, lossy but not necessarily
homogeneous, and .S, is the regular boundary of Q.. In 2 — Q,, the
dielectric is assumed to be linear, homogeneous, and lossless. The
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Fig. 1. The boundary value problem considered involves a linear, homo-

geneous, and lossless material in 2 — €, and a linear, lossy but possibly
inhomogeneous dielectric in o.

known boundary conditions specify the tangential electric compo-
nents over S (or the tangential magnetic components over .S, or the
former components over part of S and the latter components over
the rest of 5).

Thus, the mathematical model we consider is
in Q
in 2
on S

V x H = jwé(r)E
nxE=G

V x E = —jwi(r)H
{ w>0 (1)

where £(r) is the complex dielectric permittivity

. Eu in Q- Q,
sr) = {m(r) — jeor(r) in Qo @

f(r) is the complex magnetic permeability

,ll(r)z{ﬂu inQ—Q,

PoR(T) = jpor(r) in Q. ©)

w is the angular frequency and = is the unit vector normal to S and
pointing outward from region €2.

It is important to recall that the solution of the linear bound-
ary value problem (1) is unique if and only if the corresponding
homogeneous problem

VX E=—jwui{r)H inQ
{v x H=jwir)E inQ w>0 @
nxE=0 on S

admits only the trivial solution.

In order to prove that (4), in the case considered, admits only the
trivial solution E = H = 0 in €2, let us apply the typical procedure
[2], [3] used to prove the uniqueness of the solution, i.e., the energy
conservation law or Poynting’s theorem.

The continuity of the tangential components of £ and H within the
boundary S implies that E x H™ (* indicates complex conjugate) has
a continuous normal component over the possible internal interfaces.
Consequently, the divergence theorem can be applied to the whole
domain 2

%EXH*‘ndS:/V-(EXH*)dV. %)
s o

By using the vector identity

V- (AxB)=B-(VxA) —A-(V x B) (6)
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we obtain
fEx]T-ndS:/H*-(VXE)—E-(VxH*)dV @
s Q
and, by using Maxwell’s equations

ExH"
)

-ndS
= | H" - (—jwi(r)H) — E -+ (—jwé" (r)E*)dV
Q

=/—jwﬂ(r)|H|2—|—jwé*(r)|E|2dV. ®)
Q

Sincenx E=0over S(ornx H=0over S,orn X E =0 over
part of S and » x H = 0 over the rest of S), we have

fExH*~nds=o ©9)
S

and consequently

0= / —jwi(r) [ H|? + jwe (r)|E? dV. (10)
Q
Substituting for £(r) from (2) and for si(r) from (3) we obtain
0= / —jwp | H|? + jwed|E|? dV—{-/ —jw(por(r)
Q-, -

— jpert(DH|® + jwl(eor(r) + jes1(r)|E) dV
= / e B + juwe, B 4V + / —jwpor(r)
Q-Q,

o

JNHP 4 jweor()|E” dV —/ wite1(T)|H|?

Qo
+ weo1(r)|E* V. 11

This equation implies that both the real and imaginary parts of the
right-hand side integral are zeroes. Thus, in particular, the real part
must be zero, i.e.,

/ wite1(PMH|* + wes r(P|E] dV = 0. (12)

o

Both terms of the integrand of (12) are greater than or equal to
zero Vr € Q.. As a consequence, (12) is satisfied if and only if

ws,.,rf('r)IEI2 =0 VreQ.,

wite1(T)|H =0 Vr € Q,. 13)

Thus, in order to satisfy (12), we must have FE = 0 where we, 1{r)
is strictly positive, and H = 0 where wpuos(r) is strictly positive.

But, by using Maxwell’s equations

VXE=—jwpr)H

V x H=jwé(r)E (14)
and
—jwi(r) #0 Vrefl
Jwé(r) £0 VreQ (15)
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we have that £ = 0 (H = 0) in any subregion of ) implies
H = 0(FE = 0) in the same subregion. Consequently, E = H = 0
where we,r(r) or wper(r) are strictly positive. Since in a lossy
dielectric £,7(r) and u,7(r) cannot be both zero quantities we obtain

E=H=0inQ,. (16)

However, (11) does not provide any information about F or H in
2 —€),, where the dielectric is lossless. Consequently, the following
question can be raised: is it possible to have a nonzero field in 2 Q.
The answer is no, as proved by Miiller [1] (Theorem 34).

In fact, in 2 — Q, the dielectric is linear and homogeneous,
and, as no jump discontinuity in electrical properties is possible,
E,H,VxE, and V x H are continuous. Moreover, E and H satisfy

VXE=-jwu,H

V x H = jwe, B 17)

and, by using (16) and the tangential continuvity of E and H across
dielectric interfaces
nxE=0 } on S..

nx H=0 (18)

Then ([1], theorem 34) E and H vanish identically in Q2 —£),, i.e.,

E=H=0inQ-Q,. 19)

Finally, (16) and (19) imply

E=H=0in0 (20)

and the uniqueness of the solution is proved for the present particular
case.

Note that €2, cannot collapse to a point, line or surface; it must be
a three—dimensional (3-D) domain bounded by a regular surface.

III. CONCLUSION
A generalization of the standard uniqueness theorem for time-
harmonic electromagnetic fields has been presented and proved. In
particular, it has been shown that a linear, lossless, and homogeneous

dielectric can be part of the domain of interest. It can be useful to -

know that, even in this case, the boundary value problem defined
by specifying the tangential components of the electric field over the
boundary (or the tangential components of the magnetic field over
the boundary, or the former components over part of the boundary
and the latter components over the rest of the boundary) has a unique
solution. However, it will be important to complete this generalization
by assuming the linear and lossless dielectric (which is only part
of the domain) to be inhomogeneous and even to present jump
discontinuities.
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Measurement of Simple Resonant Equivalent
Circuits for Microstrip Antennas

Steven J. Weiss and Walter K. Kahn

Abstract—This paper presents a procedure which can be used to model
the input admittance of a probe-fed microstrip antenna using simple
circuit components. The values of the components are extracted from
experimental data and represent the antenna about any resonant mode.
A good circuit description of the antenna can greatly facilitate system
analysis.

I. INTRODUCTION

The cavity model has been of great value over the years lending
practical insight into the operation of microstrip antennas. Using this
model, the electromagnetic field between the patch and ground plane
of the antenna (the internal field) is assumed to closely resemble
the field which would be maintained by a cavity resonator having
magnetic walls on the perimeter and the same electric walls as the
antenna on the top and bottom [1]-[2]. The resonant modes are
dependent on the geometry of the patch. This cavity-like behavior
of the internal field(s) suggests that the antennas may be amenable
to proven techniques, developed over the years, which are used to
characterize the input admittance of cavity resonators.

This paper will develop a procedure by which measured input ad-
mittance data may be transformed to a circle of constant conductance.
After this transformation is performed, it is a simple matter to realize
a resonant circuit which describes the transformed data points. Since
the transformation itself can be accomplished using circuit elements,
a complete circuit description of the antenna’s input admittance is
obtained.

II. TRANSFORMATION OF THE DATA

Fig. 1 presents measured admittance data obtained from a probe-
fed microstrip antenna using a Hewlett Packard 8720A network
analyzer. The circular shape of the data is characteristic of these
antennas and not dependent on the geometry of the patch [2]. The
center of the circle makes an angle with the horizontal axis of the
Smith chart designated by “26.”

This analysis requires a transformation of the data to a circle of
constant conductance. Such a transformation is physically realized
using a length of transmission line (for rotation) and an attenuator.
That is, the data may be rotated to a position symmetric about the
horizontal axis of the Smith chart from the position shown in Fig. 1
if the angle # is known. This data, symmetric about the horizontal
axis, can then be viewed as originating from a circle of constant
conductance attenuated by “2a”. Accordingly, the transformation of
the reflection coefficient data from a circle of constant conductance to
a position such as that shown in Fig. 1 is realized from the relation:

—328 —2
F(w)data =e e CY]--\(“‘J)conz;tant; conductance circle (1)

The values of § and « are determined from a knowledge of the center
and radius of the measured data circle.
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