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[10]. Also it indicates that the gyroelectric property is simihu to that

of gyromagnetics.

IV. CONCLUSION

In this work, a gyrotropic node has been proposed and derived for

the TLM technique considering general anisotropy in the frequency

domain. An efficient and accurate TLM algorithm using the proposed

node has been used to the study of a class of generalized planar

structures involving ferrite and semiconductor layers magnetized

by applying an arbitrarily oriented external dc magnetic field. The

frequency-dependent characteristics of r-cut sapphire-based CPW

are also obtained. It is believed that the present field-theoretical

modeling technique paves the waytothe unified analysis and design

of microwave and millimeter-wave integrated nonreciprocal devices

and high-Tc superconducting devices.
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Electromagnetic Boundary Value Problem in

the Presence of a Partly Lossy Dielectric:

Considerations About the Uniqueness of the Solution

S. Caorsi and M. Raffetto

Abstract— This paper deals with the uniqueness of the solution of a

boundary value problem defined by specifying the tangential components

of the electric field over the closed regular boundary (or the tangentfaf
components of the magnetic field over the boundary, or the former

components over part of the boundary and the latter components over
the rest of the bonndary) of a limited region containing a linear dielectric
material not lossy everywhere. In particular, the uniqueness of the
solntion is proved in the case where the dielectric is everywhere linear,
homogeneous, and Iossless, except for a subregion where the dielectric is

Iossy, ffnear but not necessarily homogeneous.

1. INTRODUCTION

Many authors have addressed the problem of the uniqueness of

the solution of an electromagnetic boundary value problem. As many

different types of problems are important in electromagnetic, a lot

of different uniqueness theorems, tailored to the specific applications,

have been devised. For example, MiiIler [1], Barrington [2], Balanis

[3], and Collin [4] considered time-harmonic electromagnetic fields,

and Stratton [5] dealt with arbitrarily time-varying fields.

As far as time-harmonic electromagnetic fields are concerned, it

is well known [2], [3] that the tangential components of the electric

field or the tangential components of the magnetic field over the

boundary (or the former components over part of the boundary and

the latter components over the rest of the boundary) of a domain filled

with a linear and everywhere lossy dielectric uniquely determines

the solution to the boundary value problem. However, to our best

knowledge, nobody has proved the uniqueness of the solution when

the boundary conditions are the same as described above but the

dielectric is made up partly of a lossless dielectric material and partly

of a lossy medium. This paper deals specifically with this problem.

In particular, it will be shown that the tangential components of

the electric field over the boundary (or the tangential components

of the magnetic field over the boundary, or the former components

over part of the boundary and the latter components over the rest of

the boundary) uniquely determine the solution of the corresponding

boundary value problem when the medium within the boundary is

linear, homogeneous, and lossless, except for a linear and lossy

subregion that may be inhomogeneous. Future efforts will be devoted

to the general problem in which the linear and lossless dielectric is

inhomogeneous (even with jump discontinuities).

II. DEFINITION OF THE BOUNDARY VALUE

PROBLEM AND UNIQUENESS OF ITS SOLUTION

Fig. 1 shows the typical boundary value problem considered in this

paper. Q denotes the region of interest, S is its regular boundary, !2a

is the region where the dielectric is linear, lossy but not necessarily

homogeneous, and S. is the regular boundary of 00. In Q – 0,, the

dielectric is assumed to be linear, homogeneous, and lossless. The
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Fig. 1. The boundary value problem considered involves a linear, homo-
geneous, and lossless material in Q – Qm and a linear, 10SSY but possibly
inhomogeneous dielectric in Q ~.

known boundary conditions specify the tangential electric compo-

nents over S (or the tangential magnetic components over S, or the

former components over part of S and the latter components over

the rest of S).

Thus, the mathematical model we consider is

{

V x E = –jIwJ(r)H in O

V x H = juI&(T)E in $2 W>o (1)

nxE=G on S

where ;(r-) is the complex dielectric permittivity

(2)

~(r) is the complex magnetic permeability

u is the angular frequency and n is the unit vector normal to S and

pointing outward from region Q.

It is important to recall that the solution of the linear bound-

ary value problem (1) is unique if and only if the corresponding

homogeneous problem

{

V x E = –jwJ(T)H in f2

V x H = jw<(T)E in Q W>o (4)

nX~=O on S

admits only the trivial solution.

In order to prove that (4), in the case considered, admits only the

trivial solution E = H = O in Q, let us apply the typical procedure

[2], [3] used to prove the uniqueness of the solution, i.e., the energy

conservation law or Poynting’s theorem.

The continuity of the tangential components of E and H within the

boundary S implies that E x H* (* indicates complex conjugate) has

a continuous normal component over the possible internal interfaces.

Consequently, the divergence theorem can be applied to the whole

domain Q

I ExH*. ndS=
I

V. (E X H*)dV. (5)
s a

By using the vector identity

V.(Ax13) =13. (Vx A)- A.(V x13) (6)

we obtain

I
ExH*. ndS= JH*. (Vx E)– E.(Vx H*)dV (7)

s n

and, by using Maxwell’s equations

!
ExH”. ndS

s

—
-/

H* . (–jwj(T)H) – E . (–jwE*(T)E*) dV
n

——J–jWj(T)lH12 + jw;” (T)\E\2 dV. (8)
n

Since nxE=Oover S(ornx H= Oover S,ornx E= Oover

part of S and n x H = O over the rest of S), we have

I
ExH*. ndS=O (9)

s

and consequently

o= J–jWJ(T)lH12 +jUJ&*(T)lE12 dV. (lo)
rl

Substituting for ;(r) from (2) and for j(r) from (3) we obtain

– ~PUI(T))lH12 +~W(S.R(T) + ~C.I(T))lE12 dv

~IH12 +jWGR(T’)\E12 W - J UJPaI(T)lH12
no

+ W&af(T)l~12 dV. (11)

Thk equation implies that both the real and imaginary parts of the

right-hand side integral are zeroes. Thus, in particular, the real part

must be zero, i.e.,

J WPCrr(T)lH[2 + W& I(T)lE12 dV = O. (12)
no

Both terms of the integrand of (12) are greater than or equal to

zero VT c Qm. As a consequence, (12) is satisfied if and only if

kJSmI(T)l@ = O Vr E fl.

~PUI(T)lH\2 =0 W c film. (13)

Thus, in order to satisfy (12), we must have E = O where Wsa I (r)

is strictly positive, and H = O where w PCI (T) is strictly positive.

But, by using Maxwell’s equations

V x E = –jtiJ(T)H

V x H =jLJ;(T)E

and

–jti~(~) # O VT c ~

jw;(,) #o v. c Q

(14)

(15)
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we have that E = O (If = O) in any subregion of Q implies

H = O (J3 = O) in the same subregion. Consequently, E = 1? = O

where w EO1 (r) or w pa I (r) are strictly positive. Since in a lossy

dielectric &aI (T) and p. I (T) cannot be both zero quantities we obtain

E= H= Oin!20. (16)

However, (11) does not provide any information about E or H in

Q – Q., where the dielectric is lossless. Consequently, the following

question can be raised is it possible to have a nonzero field in Q – !2.

The answer is no, as proved by Miiller [1] (Theorem 34).

In fact, in Q – Qa the dielectric is linear and homogeneous,

and, as no jump discontinuity in electrical properties is possible,

E, H, V x E, and V x H are continuous. Moreover, E and H satisfy

V x E = –jtipuH

V x H =jwEuE (17)

and, by using (16) and the tangential continuity of E and If across

dielectric interfaces

nxE=O

}
on S.S.

nxH=O
(18)

Then ([1], theorem 34) E and H vanish identically in Q – Q, i.e.,

E= H= Oin W–-flo. (19)

Finally, (16) and (19) imply

E= H= Oin Q (20)

and the uniqueness of the solution is proved for the present particular

case.

Note that !& cannot collapse to a point, line or surface; it must be

a three~imensional (3-D) domain bounded by a regular surface.

III. CONCLUSION

A generalization of the standard uniqueness theorem for time-

harmonic electromagnetic fields has been presented and proved. In

particular, it has been shown that a linear, lossless, and homogeneous

dielectric can be part of the domain of interest. It can be useful to

know that, even in this case, the boundary value problem defined

by specifying the tangential components of the electric field over the

boundary (or the tangential components of the magnetic field over

the boundary, or the former components over part of the boundary

and the latter components over the rest of the boundary) has a unique

solution. However, it will be important to complete this generalization

by assuming the linear and lossless dielectric (which is only part

of the domain) to be inhomogeneous and even to present jump

discontinuities.
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Measurement of Simple Resonant Equivalent

Circuits for Microstrip Antennas

Steven J. Weiss and Walter K. Kahn

Abstract-This paper presents a procedure which can be used to model

the inpnt admittance of a probe-fed microstrip antenna using simple
circuit components. The valnes of the components are extracted from

experimental data and represent the antenna about any resonant mode.

A good circuit description of the antenna can greatly facilitate system

analysis.

I. INTRODUCTION

The cavity model has been of great value over the years lending

practical insight into the operation of microstrip antennas. Using this

model, the electromagnetic field between the patch and ground plane

of the antenna (the internal field) is assumed to closely resemble

the field which would be maintained by a cavity resonator having

magnetic walls on the perimeter and the same electric walls as the

antenna on the top and bottom [1 ]–[2]. The resonant modes are

dependent on the geometty of the patch. This cavity-like behavior

of the internal field(s) suggests that the antennas may be amenable

to proven techniques, developed over the years, which are used to

characterize the input admittance of cavity resonators.

This paper will develop a procedure by which measured input ad-

mittance data may be transformed to a circle of constant conductance.

After this transformation is performed, it is a simple matter to realize

a resonant circuit which describes the transformed data points. Since

the transformation itself can be accomplished using circuit elements,

a complete circuit description of the antenna’s input admittance is

obtained.

II. TRANSFORMATION OF THE DATA

Fig. 1 presents measured admittance data obtained from a probe-

fed microstrip antenna using a Hewlett Packard 8720A network

analyzer. The circular shape of the data is characteristic of these

antennas and not dependent on the geometry of the patch [2]. The

center of the circle makes an angle with the horizontal axis of the

Smith chart designated by “20.”

This analysis requires a transformation of the data to a circle of

constant conductance. Such a transformation is physically realized

using a length of transmission line (for rotation) and an attenuator.

That is, the data may be rotated to a position symmetric about the

horizontal axis of the Smith chart from the position shown in Fig. 1

if the angle 8 is known. This data, symmetric about the horizontal

axis, can then be viewed as originating from a circle of constant

conductance attenuated by “2G”. Accordingly, the transformation of

the reflection coefficient data from a circle of constant conductance to

a position such as that shown in Fig. 1 is realized from the relation:

f’(ti)&ta = e–~zee–za r(w)con,,an, .on~uc,ance .,,cle (1)

The values of 19and a are determined from a knowledge of the center

and radius of the measured data circle.
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